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/ ABSTRACT

.. Let G be a graph with p points having a perfect matching and
suppose n is a positive integer with n 4 (p- 2 )/2. Then G is n-extendable

if every matching in G containing n lines is a subset of a perfect matching.
In this paper we obtain an upper bound on the n-extendability of a graph
in terms of its genus. /">4<. ' • " 2-,-.-
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LIST OF SYMBOLS USED IN THIS PAPER:

1. -y Greek lower case gamma
2. 4 Greek upper case phi
3. L the so-called "left floor" symbol
4. J the so-called "right floor" symbol

NOTE: All Greek letters are circled in red in the submitted manuscript.
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1. INTRODUCTION AND TERMINOLOGY 5

MATCHING EXTENSION AND THE GENUS OF A GRAPH

by

*"' Michael D. Plummer*
* Vanderbilt University

Nashville, Tennessee, USA

1. Introduction and Terminology

Let G be a graph with IV(G) = p points and IE(G) = q lines.
(Loops and parallel lines axe forbidden in this paper.) A matching in
G is any set of lines in E(G) no two of which are adjacent. Matching
M in G is said to be a perfect matching, or p.m., if every point of G
is covered by a line of M. Let G be any graph with a perfect matching
and suppose positive integer n (p - 2)/2. Then G is n-extendable if
every matching in G containing n lines is a subset of a p.m.

The concept of n-extendability gradually evolved from the study of
elementary bipartite graphs (which are 1-extendable) (see Hetyei (1964),
Lovgsz and Plummer (1977)), and then of arbitrary 1-extendable (or
"matching-covered") graphs by LovAsz (1983). The study of n-extenda-

1-41 bility for arbitrary n was begun by the author (1980).
The genus of graph G, "y(G), is the minimum genus of all (orientable)

surfaces in which G can be imbedded. Any imbedding of G in a surface
of genus -y--- -y(G) is said to be a minimal imbedding. (For more in-
formation on the genus of a graph, see White (1973). In particular, recall
the well-known result of Youngs (1963) which says that if graph G is

-v imbedded in a surface of genus -y = -(G), then the (minimal) imbedding
must be a 2-cell imbedding.)

.-. A relationship between matching and genus was first studied by

Nishizeki (1979) who treated the interplay between genus and the car-
dinality of a maximum matching.

In (1985), we showed that.if G is planar, then G is not 3-extendable.
Cook (1973) proved a result that implies that if G is a graph with genus
-y(G) = -y > 0, then G is not [1(5 + VT1+ 4'iI)J -extendable. In the
present paper, we will improve on this result by showing that if -y(G) >

0, then G is not [I )-extendable. Moreover, in the

work supported by ONR Contract # N00014-85-K-0488
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case of "toroidal" graphs (i.e., graphs of genus 1) we obtain structural
information about - and an infinite family of - extremal graphs.

Throughout this paper, we will assume that all graphs are connected,
that mindeg(G) ,> 3 and that mindeg *(G) > 3, where mindeg *(G)
denotes the size of a smallest face in an imbedding of G. We shall call
a graph G bicritical if G - u - v has a p.m. for every pair of points
u, v E V(G). For any additional terminology, we refer the reader to
Harary (1969), to Bondy and Murty (1976) or to Lovisz and Plummer
(1986).

2. The bound for arbitrary positive genus

One of our main tools will be the so-called theory of Euler con-
tributions initiated by Lebesgue (1940) and further developed by Ore
(1967) and by Ore and Plummer (1969). Let v be any point in a graph
G minimally imbedded in a surface of genus -y(G). Define the Euler
contribution of v, 4b(v), by

deg v -deg 1
E 2 zi

where the sum runs over the face angles at point v and z, denotes the
size of the ith face at v. (It is important to keep in mind that a face may
contribute more than one face angle at a point v. Think of K, imbedded
on the torus, for example.)

We next present several simple lemmas. We include the proofs for
the sake of completeness. The first is essentially due to Lebesgue (1940).

2.1. LEMMA. If a connected graph G is minimally imbedded in a
surface of genus -y = 'I(G), then F, 0(v) = 2- 2-y.

PROOF. Let p = IV(G)I, q = IE(G) and r be the number of faces
in the imbedding. Then

eg d vegO: (V)= I g + =p- q+ r 2- 2-y

by the generalized Euler formula. U

.*
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2. THE BOUND FOR ARBITRARY POSITIVE GENUS 7

2.2. LEMMA. Let G be minimally imbedded in a surface of genus
-y = -y(G) and have mindeg *(G) ! 3. Theft for all v E V(G), 0(v) _

I - deg v/6.

PROOF. Since zi > 3 for all i, we have 0(v) _ 1-degv/2+degv/3
and the result follows. 0

2.3. LEMMA. If G is connected and p = IV(G)l and -y = 'y(G), then
for some v E V(G), *(v) > (2 - 2 -y)/p.

PROOF. The average value of $(v) = (-, by Lemma
2.1, and the conclusion follows.

Let us agree to call any point v E V(G) which satisfies the inequality
of Lemma 2.3 a control point (since such a point will be seen to
"control" , or limit, the degree of matching extendability in G).

2.4. COROLLARY. If G is connected and -y = -(G), then if v is
any control point,

degv 1 > . + degv.. Z -> (2 ')+ 2 1.

E '

PROOF. Follows immediately from Lemma 2.3 and the definition of

2.5. LEMMA. If G is connected and 7 = 7(G), then for any control

point v, degv <6 + 12(7 - 1)/p.

PROOF. From Lemmas 2.2 and 2.3 we have (2 - 27)/p _ $(v) 5
1 - deg v/6 and the conclusion follows.

Next, we need a lower bound on the number of points in a graph of

genus 7. The following is an immediate corollary of the Ringel-Youngs
formula for the genus of the complete graph (1968).

2.6. LEMMA. If G has p points and -7 (G) = 7 > 0, then p >(7 + V4487 -47)/2.

PROOF. By the Ringel-Youngs result we have

7 = 7 (G) _ (7(Kp) -[( 3)(p - 4)] < (p - 3)(p - 4) +1

and the inequality follows. U

d* 7
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As our last preliminary results we state the next two theorems which
will be used repeatedly below. The proofs may be found in Plummer
(1980).
2.7. THEOREM. If G is n-extendable for some 2 < n < (p- 2)/2,

then G is also (n - 1)-extendable.

2.8. THEOREM. If G is n-extendable for some 1 < n < (p- 2)/2,
then G is (n + 1)-connected. U

We are now prepared for the main result of this paper.

2.9. THEOREM. If G is any connected graph with "I(G) = "Y > O,
then

(a) G is not + - extendable, while if (b) in addi-

tion, G contains no triangle, then G is not (2 + [2vPjJ)- extendable.

PROOF. If G contains no triangle, then G is at most (2 + [2VCJ)-
connected, by Theorem 4 of Cook (1973), and hence is not (2 + [2viJ)-

extendable by Theorem 2.8. But since 2 + [2Xjij < 2 + 1s( - ,
[. 7+ 48i -4 7J

918('7-1) j

for all -y _ 1, G is not i + 7+-,/49-y- extendable by Theorem 2.7.

So suppose G contains a triangle. (Note that this triangle need
not be the boundary of a face in general.) Suppose also that G is

2 + J)j'84 - extendable. Then by Theorem 2.7, G must be

2-extendable. But then by Theorem 4.2 of Plummer (1980), G must be
either bipartite or bicritical. But if G is bipartite, it contains no triangles,
so it must be that G is bicritical.

From Lemma 2.3 we know that there exists a control point v E V(G)
and from Lemma 2.5 for any such control point v, deg v < 6 +1 2(y - 1)/p.
Using Lemma 2.6, we obtain

degv < 6 + 12(-y- 1)/p

6+ 12(-y- 1). 2
6+7 + X/ 8" - 47

24(7- 1)
• 7 + N/48 - 47

(Note that the second inequality in the above series of three is strict
whenever -1 > 1.)

e2.-.:



2. THE BOUND FOR ARBITRARY POSITIVE GENUS 9

Let us say that a matching M in G isolates a point v if the lines
of M cover N(v), the set of neighbors of v, but M does not cover v.
We will now show that given any control point v in G, there must be a
matching in G which isolates v.

If there exists a point w 0 {v} U N(v), then G - v - wv has a p.m.
which certainly isolates v. So let us assume that {v} U N(v) = V(G).
Then by Lemma 2.5, we have p = degv+ 1 < 7+ (12('y- 1))/p. From this
inequality it follows that (p- 2)/2 _ (3 + V/1TT48q)/4. Now by definition
of n-extendable, n < (p - 2)/2 and hence

9 + 18(-y - J< :[ 3 + V/l+48,,J
+ 7 + v/87 - 47 4

If we write this inequality as [F(y)J [G( )J0 we claim that F(-y) -

1 > G(-y) (the details are left to the reader) and hence we have a
contradiction.

So we may assume that G contains a matching which isolates control
point v.

Claim 1. If deg v = y and there are z triangular faces at point v,

then if M,, is a smallest matching which isolates v, then I M1, :5 y - x/4.
Proof of Claim 1. If x = 0, the inequality is trivially true, so suppose

that x > 0. Since M, is made up of two types of lines: (a) lines matching
a point of N(v) to a point of V(G)-(N(v)U{v}), and (b) lines matching
two points of N(v), we can obtain an upper bound for M, once we have
an upper bound for the total number of lines of type (a). When we have
a matching at hand which matches a point u of N(v) to a point not in
N(v) U {v}, we will say that u is matched out of N(v).

Note that no two points ui, u1 +1 in N(v) which lie on the same
triangular face at v can both be matched out of N(v), for we could
replace these two lines out of N(v) with the line uiui+l and get a new
matching which still isolates v, but is smaller than M,, a contradiction
of the choice of M,. So we want an upper bound on the largest number
of potential matching lines out of N(v) subject to the constraint that no
triangular face vuiui+v has both ui and ui+1 matched out of N(v).

Without loss of generality, we assume that the various clusters of
triangular faces are consecutive in, say, a cyclic clockwise array about
point v; that is, two clusters are separated by exactly one non-triangular
face. (See Figure 2.1.)

We now claim that the largest number of potential lines out of N(v)
from triangular faces in general is no larger than the number of such
potential lines when all z triangles are in one triangle cluster.
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FIGURE 2.1.

A...

FIGURE 2.2.

FIGURE 2.3.

This can perhaps be most easily seen by an inductive procedure
, -. whereby we reduce the number of triangular clusters by one, but the

number of potential matching lines out of N(v) is never reduced. Let us
call a cluster of triangular faces odd if the number of triangular faces in

the cluster is odd and otherwise, even.
There are three cases to treat: (a) one odd and one even cluster,

.V. (b) two even clusters and (c) two odd clusters. See Figure 2.2 in which

potential lines out of N(v) belonging to an isolating matching are shown
as arrows. In each case the dashed arrow represents the new potential
line out of N(v) obtained by the departure of a line lost in coalescing

the two clusters. (The degree of v must remain constant of course.)
Note that in cases (a) and (b) above, the potential number of lines

out of N(v) stays the same under the indicated transformation while in
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(c) it increases by one.
So now we shall suppose that the z triangular faces at v are con-

secutive. Let the points of the triangular faces be uo,. . . , u= (in this same
clockwise order).

Recall that if any two consecutive ui's are joined by a line of E(G),
but each is matched out of N(v), then M, is not a smallest isolating

matching.
Let us first assume that x < y.
If z is odd, the largest possible number of M,, lines out of uo,... Iz

is (x + 1)/2. (See Figure 2.3.) If x is even, on the other hand, this largest
possible number of M., lines out of u0 , ... , u- is (x + 2)/2. (See Figure
2.4.)

Now let us again suppose x is odd. In this case, there remain
X + 1 - ((x + 1)/2) = (x + 1)/2 points of the x triangles which must
be matched to other points in N(v). Clearly, there will remain the most
points of N(v) available to be matched out of N(v) when these (x + 1)/2
points are perfectly matched with each other (when (x+ 1)/2 is even) and
near-perfectly matched - with one matched to a neighbor of v not on a
triangular face at v - in the case when (x+ 1)/2 is odd. So the maximum
number of neighbors of v matched out of N(v) is = (x + 1)/2 + y - (x + 1)
when (x + 1)/2 is even and is = (x + 1)/2 +y- (x + 1)- 1 when (x + 1)/2
is odd.

Thus when (x + 1)/2 is odd, we have

"-. <(z+1<+(yx(++1) (x + 1)/2 + 1 (x + 3)

1MI<+ (y - (x+ 2)) + = y -I
- 2 2 4

while when (x + 1)/2 is even, we have

x +(Y-(X+ 1))+ (zy +
!,.-- 2 2 2 4

Now suppose x is even. (See Figure 2.4.) Then there remain (x +
1)- (x + 2)/2 = x/2 points of the x triangles which must be matched to
other points in N(v). As before, clearly there will remain the most points
of N(v) available to be matched out of N(v) when these x/2 points are
perfectly matched pairwise when x/2 is even and near-perfectly matched
pairwise - with one matched to a neighbor of v not on a triangular face
at v - when x/2 is odd.

So if x/2 is odd, we have
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IM>I<-- 2 + y - (z + 2)+ (x/2+ l)= y ( + 2)

22 4'

while if x/2 is even, we have

., 1 :5 - + y - C± + 1) + C(/2) y - x/4.
2 2

Now let us assume that = y; in other words, that all faces at y
are triangles. Label N(v) clockwise as Ul,..., u. First suppose that z
is even. Then {u1u 2, U3U4,.. UX-iuz} is a matching isolating v and
hence IM,, = x/2 =y - x/2 < y - x/4.

Finally, suppose that x is odd. If any of the ui's can be matched
out of N(v) U {v}, say ul for example is matched to a point w, then

{u 1W, U2 U 3,. Ux-lx} is a matching isolating v and so IMoI = (x-
1)/2 + 1 = (x + 1)/2 = x- (z - 1)/2 = y - (z - 1)/2 < y - x4, since
z = y > 5. (Recall that by Theorem 2.7, graph G is 4-extendable and
hence by Theorem 2.8, G is 5-connected. Hence mindegG > 5.)

So assume that {v, U1,..., Uz} = V(G). But then G has no match-
ing which isolates v, a contradiction.

So we see that in all cases, IMI < y - z/4. This completes the

proof of Claim 1.
So let f(x, y) = y-(x/4). We would now like to find an upper bound

for f(x, y) in terms of -y. From Corollary 2.4 and Lemma 2.6 we have

Y 1 2('y- 1)
"" 2- E i p

4(--1)

,.i 7 + 48 '--47

-z - X 4('y - )..:-',< - + - + -+ I
- 3 4 7 + V48"7- 47

Hence
z 16(- 1) +4. (2)

rhus we have the linear program:

o O' . _. . • . • . - ,- . • . •.- . • . • . - . " . " .' ." ,. ,". - . . . , " . " "1 " - , - .- , ." .. ' " . " . - .. ,.' - . . . - ,- . " ,



2. THE BOUND FOR ARBITRARY POSITIVE GENUS 13

maximize f(z, y) =y - (x/4)

subject to y <6+ 24(y-- ()

y < 7+4 + +16(--1) (2)

0 < X5 < (3)

. 5 < y. (4)

The feasible region is a quadrilateral having vertices A (0,4 +
16r(-y)), B = (6 + 24r(-y), 6 + 24 r(-I)), C = (5,5) and D = (0, 5), where

=7+V " Hence the maximum value for f(z, y) occurs at7-4 +184=8 4=

vertex B and this value is i + 1+ 7 .

Now since we may select only integral numbers of lines, we can isolate

v by choosing at most + 7 1- lines which collectively cover

N(v) and the proof is complete.

..-

'..%

* %

..,.'..

. 2:-.
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FIGURE 3.1.

3. The special case when I-- 1

When G is "toroidal", that is, when "y(G) = 1, we can obtain a
sharper result than that implied by Theorem 2.9.

3.1. THEOREM. If G is connected and -I(G) - 1, then either
(a) G is not 3-eztendable or
(b) G is point-regular of degree 4 and face-regular of degree 4 and

hence not 4-eztendable.

PROOF. From Lemmas 2.1 and 2.5 we know G contains a point v
with 0(v) > 0 and deg v < 6. Now suppose G is 3-extendable.

Case I. Suppose 0(v) > 0, for some point v. (As before, we will call
such a point v a control point.) Then deg v < 5 by Lemma 2.2. Now by
definition of n-extendability, p > 8. Also we know that G is 4-connected
by Theorem 2.8 and hence deg v > 4.

First let us assume that deg v = 4. Now the solutions to the
diophantine inequality

41
i,

are as listed in Plummer (1985) and we proceed to treat each.

(3,3,3, x), x > 3. Let the neighbors of v be {a,b,c,d}. Then note
that no two of these four neighbors of v can be equal since G has no
multiple lines. Thus {ab, cd} do not extend to a p.m. and hence G is not
2-extendable. But then by Theorem 2.7, G is not 3-extendable either, a
contradiction. (See Figure 3.1.)

(3, 3, 4, z), 4 < x < 11. Let the fourth point of the 4-face at v be e.
(i) Suppose the two triangular faces are consecutive in, say, the

clockwise direction about point v. We know that e 4 c, d or b, again
since there are no multiple lines. So suppose e = a. Then {ad, bc} do
not extend and we have a contradiction as before. (See Figure 3.2(i).)

So efn {a,b,c,d} = 0. Now if there exists a point g 0 {a,b,c,d,e},
but which is adjacent to one of the points a, c, d, we get a matching of

i,
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FIGURE 3.2.

FIGURE 3.3.

size 3 at v which does not extend, again a contradiction. Thus since
G has at least 8 points, we have that {b, e} is a cutset of G and hence
G is not 3-connected and hence not 2-extendable, a contradiction. (See
Figure 3.2().)

(ii) Now suppose the two triangular faces are separated by the 4-
gonal face. Then {ab, cd} is a matching of size 2 which does not extend,
a contradiction.

(3,3,5,x), x = 5, 6, 7. There are two cases to consider.
First let us suppose that the two triangular faces at v are consecutive

in the clockwise orientation about point v. Let d be the point on the
pentagonal face at v which is adjacent to point c via a line of the
pentagonal face boundary. Also let the remaining fourth point adjacent
with point v be denoted e.

Now we know that d cannot be equal to b, c or e, so suppose that
d --a. (See Figure 3.3(i).)

Now if points e and b are adjacent then {be, ac} does not extend, a
contradiction. So suppose that e and b are not adjacent.

Now if e and a are adjacent, then matching {ea, bc} does not extend,
while, symmetrically, if e and c are adjacent then matching {ec, ab} does

not extend. In either case we have a contradiction.
So point e is adjacent to a point g, g 0 {a = d, b, c} and we may

assume that g is such that line eg is on the boundary of the pentagonal

face at v. Thus we may assume that g and a = d are adjacent on the
pentagonal face.

Now since deg b > 4, we must have a point h adjacent to b such
that h {a = d, b, c,v }. We already know that h 34 e from above. If

,Le
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FIGURE 3.4.

FIGURE 3.5.

h 3 g, then matching {bh, ac, eg} does not extend and once again we
have a contradiction.

So we must assume that g = h. (See Figure 3.3(ii).) Now we already
know that e is not adjacent to any of a = d, b, c. Since dege > 4, there
must be yet another point j, where j 0 {a = d, b, c, v, g = h}. See Figure
3.3(iii). But the matching {ej, ag, bc} does not extend, a contradiction.

' So now we may suppose that d 34 a. Hence d 0 {a, b, c, v, e}. Now
let f be the fifth point of the pentagonal face at v. So the pentagonal face
boundary at v is vcdfev. If f 0 {a, b, c}, then the matching {ab, cd, ef}
does not extend, a contradiction. (See Figure 3.4(i).)

So we assume that f E {a,b,c}. But f $ c since G cor. no
multiple lines. So f E {a, b}.

First suppose that f = a. (See Figure 3.4(ii).) In this case, {ae, bc}
does not extend.

Now suppose that f = b. (See Figure 3.5.)
If a is adjacent to some point g, where g 0 {b = fc, d, v, e}, then

matching {ag, be, cd} does not extend, a contradiction. Therefore, since
deg a > 4, a must be adjacent to some two points in the set {c, d, e}. If a
is adjacent to c, the matching {ac, be} does not extend, a contradiction.
So a is adjacent to both d and e. But then matching {ae, bc} does not
extend, a contradiction.

This finishes the case when the two triangular faces at v are con-
secutive.

Now assume that the two triangular faces at v are separated by the
pentagonal face. (See Figure 3.6.) But then matching {ab, cd} does not
extend. This completes the case for (3,3,5, z), z = 5,6, 7.
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FIGURE 3.6.

FIGURE 3.7.

FIGURE 3.8.

(3, 4, 4, z), x = 4, 5. First suppose that the two quadrilateral faces
at v are not separated by the triangular face. Without loss of generality,
suppose the neighbors of v in a clockwise orientation about v are a, b, c, d
respectively, where abva is the triangular face. Let vbecv be the 4-gonal
face contiguous to the triangular face, moving clockwise.

Suppose now that e = a. (See Figure 3.7.) In this case, since G has
no parallel lines, deg b = 2, a contradiction.

So suppose a 4 e. If e = d, then matching {ab, cd) does not extend.
So we may suppose e 3 a, d. (See Figure 3.8.)

First note that c is not adjacent to d or we would have a matching
of size 2 which does not extend. Then we must have N(d) _ {a, b, e,v}
or else we would have a matching of size 3 which does not extend. But
then since degd > 4, we must have N(d) = {a,b, e, v}. Next consider
N(a). Point a is not adjacent to c or else we would have a matching of

size 2 which does not extend. So we must have N(a) ; {b, e, d, v} or else
as above we would have a matching of size 3 which does not extend. So
since dega > 4 also, we get that N(a) = 1b,d,e,v). (See Figure 3.9.)

Applying the same arguments to possible neighbors of point b, we
see that N(b)= {a, d, e, v} too and hence, since I(VG)I _ 8, since G is
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FIGURE 3.9.

FIGURE 3.10.

3-extendable, we must have that {c, e} is a cutset for G, contradicting
the fact that, by Theorem 2.8, G must be 4-connected.

Now we turn to the case in which the two quadrilateral faces at v
are separated in the clockwise order about v by a triangulax face. Let
the first quadrilateral face be denoted vaebv, the contiguous triangular
face by vbcv, and the next contiguous quadrilateral face by vcfdv. First
of all, note that points a and d are not adjacent or we would have a
matching of size 2 which does not extend. Thus d = e.

Suppose next that e = c. Then since G has no parallel lines, degb =

2, a contradiction.
Thus e 0 {a, b, c, d, v}. By symmetry, f 0 {a, b, c, d, v} as well.
Suppose now that e = f. (See Figure 3.10.)
Now N(d) g_ {e = , b, c, v}, or else we get a matching containing

ae and bc, and covering d, which does not extend. By 4-connectivity,
then, N(d) = {e = f,b,c,v}.

Similarly, N(a) g {e = f ,b,c,d,v}. But b 0 N(a), or else {ab, cd}
does not extend. We already know that d 0 N(a), so N(a) {e =
f , c, v}, contradicting the 4-connectivity of G.

Thus we may assume that e -7 f. (See Figure 3.11.) But then
{ae, bc, f d} does not extend; a contradiction. The case (3, 4, 4, z) is thus
complete.

Now suppose deg v - 5. Then we have the inequality

5 1 3
-

>-

The only solutions in this case are:
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FIGURE 3.11.

(3,3,3,3,z), z = 3,4,5. Let N(v) = {a,b,c,d,e}. Now if there is

- . a point g 0 N(v) such that either a is adjacent to g or e is adjacent to

g, we are done since the matching {ag, bc, de} (respectively, {ab, cd, eg})
does not extend, a contradiction.

We get a similar contradiction if there is a point g 0 N(v) such that
g is adjacent to point c. But then since G must have at least 8 points,
since we are assuming it is 3-extendable, it follows that {b, d} is a cutset
for G and hence G is not 3-connected, a contradiction.

Case II. So we may assume that O(v) < 0 for all v E V(G). But
then by Lemma 2.1, we have qb(v) = 0 for all v E V(G). Choose an
arbitrary point v in V(G). Then by Lemma 2.2, 0 = O(v) _ 1-degv/6,
so deg v 6.

We also now have 'I(v) = 1 - degv/2 + .il/x1 = 0,
or E deg, 1/z = deg v/2 - 1. Moreover, since G is 3-extendable, it is
4-connected and hence degv > 4.

First suppose degv = 4 and hence E4 1/xi = 1. Let N(v)
{a, b, c, d} in the usual clockwise orientation about v. Also let the faces
with face angles at v be named F1 , F2 , F3 , F4 under the same orientation
where face F contains the lines av and vb.

There axe only four solutions to this diophantine equation:
(3,3,4, 12), (3, 3,6,6), (3,4,4,6), and (4,4,4,4). Arguments identical to
those in Case I give us contradictions for the solutions (3,3,4,12) and
(3,4,4,6).

Let us consider the case (3, 3,6, 6). If the two triangular faces axe not

consecutive in the clockwise orientation about v, then we have a matching
of size 2 which does not extend and again we have a contradiction. So
we may assume that the two triangular faces at v are consecutive in the
clockwise ordering. Let N(v) = {a, b, c, d} where abva and bcvb are these

* triangular faces. Note that a and d are not adjacent, or else {bc, ad)
would not extend. Similarly, points c and d are not adjacent.

Since degc > 4, point c is adjacent to some point f where f
{a,b, d, u}. Similarly, point d is adjacent to at least two points not in
{a,b,c,v} and hence to a point g0 {a,b,c, v, f}. But then {ab, cf, dg}
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is a matching of size 3 which does not extend.
We defer the remaining case (4,4,4,4) until the end of this proof.
Next, suppose deg v = 5 and let N(v) = {a, b, c, d, e}. Then

E5.1 1/z, = 3/2. It is then clear that z = 3 for -.t least two of the
zXi's, but for no more than four.

Suppose first that more than two z's = 3. In fact, suppose first
that four of the faces at v are triangles and hence the fifth must be a
hexagon.

Again, since G is 3-extendable, IV(G) > 8 and so there must be a
line with exactly one endpoint in the set N(v). If such a line is incident
with a, c, or e, we get a contradiction as before. So such a point can

*... only be incident with b or d. But then {b, d} must be a cutset of G, a

contradiction.
Suppose next that there are precisely three triangular faces at v and

hence the two remaining faces must both be quadrilaterals. There are two
subcases to consider here. First suppose that all three triangular faces
are consecutive in a clockwise orientation about point v. Without loss of
generality, suppose that faces avba, bvcb and cvdc are these triangular
faces. Now as before, if point e is adjacent to a point different from
a,b,c,d or v, then G is not 3-extendable. So N(e) 9 {a,b,c,d,v}.
Since dege > 4, we may assume that e is adjacent to b without loss
of generality. Now if a were adjacent to a point g not in {b, c, d, e, v}
then again G is not 3-extendable. Thus we may assume that N(a) C
{b, c, d, e, v}. But then again since IV(G) _> 8, {b, c, d} is a cutset
contradicting the fact that G is 4-connected.

So now suppose that the three triangular faces at v are not consecu-
tive about v. Without loss of generality, assume that abva, bcvb and
devd are the triangular faces at v. Now if either a or c is adjacent to a
point not in the set {a, b, c, d, e, v}, we find that G is not 3-extendable.
Thus N(a) g {b, c, d, e, v} and similarly for N(c). Thus {b, d, e} is a
cutset of G, once again contradicting the fact that G is 4-connected.

So suppose that exactly two z's = 3, say z and X2 . Then
1/z3 + l/z4 + 1/X5 = 3/2 - 2/3 = 5/6, and this contradicts the fact
that 1/z3 + 1/z 4 + 1/z5 3/4.

Finally, suppose degv = 6 and hence F,- l/z, = 2. Then the only
solution to this diophantine equation is (3, 33,3, 3,3) but since IV(G) _
8, it is immediate that G is not 3-extendable.

It remains only to consider the solution (4, 4, 4, 4). Moreover, since
all other cases have been treated, we may assume that G is both 4-point-

regular and 4-face-regular. But such a graph can be at most 4-connected

~ -~. -.A - - - o %, -.- o. .-.- . -z
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FIGURE 3.12.

and hence not 4-extendable.

An infinite family of graphs of genus I which are 3-extendable is the
family of bipartite toroidal lattices T(2m, 2n), for m, n > 2, where
T(2m, 2n) is just the Cartesian product of the even cycles C2, and C2,,

on 2m and 2n points respectively. Clearly these graphs can be imbedded
on the torus in such a way that each face is a quadrilateral. We show
T(4, 6) so imbedded in Figure 3.12. (Note that T(4, 4) is perhaps better
known as the 4-cube, Q4.)

-.
:.

MO.
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